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Abstract
We propose an active vision system for object acquisition. The core of our approach is a reinforcement learning module
which learns a strategy to scan an object. The agent moves a virtual camera around an object and is able to adapt dynam-
ically to different conditions of its environment such as different objects and different purposes of the data acquisition by
means of a reinforcement signal which rewards a chosen action with respect to the intendet purpose. The purpose of the
acquisition we consider here is the reconstruction of non-acquired views. The learned scan path allows the generation of
a sparse, view-based object representation which consists of some key views of the scan path. We present preliminary
results from a project conducted with undergraduate students and show that the scan pattern obtained with the proposed
method allows a better reconstruction of unfamiliar views than random scan paths. As the reward signal is based on local
information at the current position of the camera this approach is an example for an organic-computing system with the
emergence of a global strategy from local rules.

1 The Problem
Computer vision, as well as computer graphics, deals with
the visual appearance of objects. Among the topics of
computer graphics is the generation of 3d models from real
world objects for geometric modeling. One of the major
problems in Computer Vision is the recognition of objects
from single views. For both purposes internal object repre-
sentations, either 3d model-based or 2d view-based, have
to be acquired.
Up to now in both fields of research data acquisition is sep-
arated for the most part from the processing of the acquired
data. This often implicates that the acquired data are either
insufficient or redundant for a future application.

2 Adaptive Approach
In this article we concentrate on the view-based acquisi-
tion of objects. We approach this problem by an active
vision system whereby the processing of the data directly
influences the data acquisition. Data are demanded only
when they are purposeful for the intended application. To
be more concrete, we put this principle into practice with
the example of learning view-based object representations.
Our system learns a strategy to scan an object. The learned
scan path on the view sphere of the object allows the gen-
eration of a sparse, view-based object representation which
consists of some key views of the scan path. The strategy
for scanning is learned dynamically in the sense that differ-
ent scan paths would result for different applications. The
application we consider here is the view-based reconstruc-
tion of non-acquired views. View reconstruction is done by
2d view morphing from key views selected from the scan
path.

The core of our approch is areinforcement learningmod-
ule which implements an autonomous system with asen-
sor (a camera moving around the object) and anactuator
which moves the camera to the next view. The system, i.e.,
the agent, interacts with itsenvironmentin a perception-
action loop. In each step of interaction the agent receives
information on the currentstateof its environment. A state
is defined by the current camera parameters (i.e., the cur-
rent perceived view of the object) and information on the
object learned so far. Then the agent chooses anaction,
i.e., moves the camera to a next view and updates the rep-
resentation learned up to this time. This changes the state
of the environment, which again is perceived in the next
step of interaction.
The agent is able toadapt dynamicallyto different condi-
tions of its environment (i.e., different objects and different
purposes of the data acquisition) by means of a reinforce-
ment signal, which rewards a chosen action with respect to
the intended purpose (here the reconstruction of unfamil-
iar views). The goal is the maximization of the longterm
sum of the reinforcement signals for a sequence of actions.
By a systematic trial-and-error approach over several scan-
ning episodes, i.e., by exploration and exploitation of its
environment, the agent learns his behavior, thus improv-
ing his scanning strategy slowly from episode to episode.
By rewarding only actions which have proven to be use-
ful for a specific purpose meaningful behavior of the agent
emerges. We show that a scan pattern learned in the de-
scribed way results in a better ability to reconstruct non-
acquired views than a random scan path.
The described method has parallels to principles observed
in natural systems, where learning by exploration and re-
ward can create advantageous behavior. As the learned



scan pattern depends on the goal of the data acquisition
as well as the structure of the object the proposed system
is context-sensitive. It is alsoself-organizingin the sense
that meaningful behavior, i.e., performing only those ac-
tions which are required, emerges without an external or-
ganizer. The role of the user is restricted to the definition
of thehigh-level goalof the object acquisition, such as the
generation of an object representation that allows for the
reconstruction of non-acquired views or the recognition of
the object on the one hand, or the generation of a 3d model
on the other hand.

3 Related Work
The termviewpoint planningsummarizes techniques of
deciding the optimal viewpoint distribution which captures
all relevant information about an object or a scene for a
specific task. Within the last decade a variety of meth-
ods for viewpoint planning have been proposed. But in
the field of computer vision it is usually not employed
until the level of object recognition [1], instead of utiliz-
ing it also for object acquisition. In [3] an approach to
the acquisition of view-based object representations is pro-
posed where key-frames for the representation are chosen
from an image sequence. But the scan path as well as the
strategy for the choice of key-frames are given. Also for
more adaptive systems, which try to adapt the scan path
to the object or the application, holds true that the strate-
gies for scanning an object or a scene are mostly given by
the developer [4, 6, 5, 2, 7]. Only recently these strategies
are also learned automatically, for example with methods
of reinforcement learning. This approach is chosen, e.g.,
by [8, 9, 10] for the autonomous emergence of strategies
for object recognition. We do not know any approach to
object acquisition by active learning up to now and pro-
pose a method which adaptively learns a view-based object
representation without a given strategy.

4 Components of the System
In this section we introduce the components which consti-
tute the object acquisition system. In section 5 is described
how they work together.

4.1 Data Base and View Representation

Up to now the proposed scanning system is working virtu-
ally only, i.e., it is not implemented on a hardware scanner
yet. We simulate an eye-in-hand camera setup with the ob-
ject on a table. The camera rotates around the object at
a fixed distance and is oriented to the center of the object
base. The observed object views are represented in a data
base which contains views for 100 lines of longitude and
25 line of latitude on the upper view hemisphere resulting
in 2500 views for one object (figure 3).
Each of the recorded views is preprocessed by aGabor
wavelet transform, which is biologically inspired because
Gabor wavelets approximate response patterns of neurons

Figure 1 Labeled grid graph placed on the image after seg-
mentation. Each node of the graph is labeled with the cor-
responding Gabor wavelet responses.

Figure 2 The grid graph shown in the left view is tracked
along the sequence to the view shown on the right. The
nodes stay on corresponding object points.

in the visual cortex of mammals [14, 15]. A simpleseg-
mentationbased on [16] utilizing gray level values follows.
It separates the object from the background. A regular grid
graph is placed on the object segment and the nodes of the
graph are labeled with the corresponding Gabor wavelet
responses. This results in a representation of each view in
form of a labeled grid graph(figure 1). Each node label is
a feature vector which describes the local surroundings of
the node. It consists of the amplitude and phase compo-
nents of the convolution of the image with the Gabor filter
bank at the node position. A filter bank with wavelets of 8
orientations and 4 frequencies is used.

4.2 Correspondences by Tracking
The view-based reconstruction of non-acquired views by
morphing requires the existence of corresponding points
on the object between scanned views. They are obtained by
tracking the nodes of a graph from frame to frame within
a local area of the view hemisphere. This is realized by
utilizing the information obtained from the Gabor trans-
form at each node of the graph [17] (figure 2). A similarity
function between two graphs based on the Gabor wavelet
responses is defined reflecting the similarity between the
particular views [18].

4.3 Sparse Object Representation
A sparse, view-based object representation consists of orig-
inal grid graphs and tracked graphs of only some key views
of the scanned path. We obtain it in the following way.
Given a scan path on the view hemisphere we start with
its first view (key viewK0) and incorporate its original
grid graphGK0

orig in the object representation. This graph is
tracked according to section 4.2 along the scan path until
the similarity between the tracked graph at the current view



Figure 3 View hemisphere with some images of sample
views of two objects. The illustration shows a possible
scan path with three key views.

of the scan path andGK0
orig drops below a preset threshold.

The tracked graphGK1
track for this second key viewK1 is

also stored in the object representation. ForK1 a new grid
graphGK1

orig is generated and incorporated into the repre-
sentation as well. Then it is also tracked until the simi-
larity to GK1

orig drops again below the threshold, and so on.
Thus, for the first and the last key view of the scan path
only one graph is stored (GK0

orig andGKN

track, respectively),
whereas for each other key viewKj , j = 1, . . . , N − 1 of
the scan path two graphsGKj

track andGKj

orig are stored in the
object representation, ensuring piecewise correspondences
for local areas of the view hemisphere (figure 3).

4.4 Reconstruction of Non-Acquired Views

To test whether the relevant information on the object has
been captured by the learned scan path we reconstruct non-
acquired views from the key views. An unfamiliar view is
morphed from those two consecutive key views which are
closest to it, using the correspondences provided by the
tracking procedure (section 4.2). For view morphing we
use a standard technique described in [19]. A morphed
view can then be compared to its original version by an
error function also described in [19]. This yields an error
erecon for a reconstructed view (figure 4).
This technique is used for the calculation of the reward sig-
nal after each step of a scan episode as well as for the cal-
culation of the total reconstruction error after each episode
during the learning phase.

original  view (3, 7) original view (14, 7)

morphed view (7, 11) original view (7, 11)

Figure 4 Reconstruction of non-acquired views. In this ex-
ample the non-acquired view(7, 11) is reconstructed from
the key views(3, 7) and(14, 7). It can be compared to the
original view(7, 11).

5 Adaptive Object Acquisition with
Reinforcement Learning

Several methods have been proposed for the control of re-
inforcement learning designs many of which are summa-
rized in [11, 12, 13]. We applyQ-learning with a learning
rateα = 0.85 and anε-greedy policy withε = 0.1. This
means that the agent chooses a random action in 10 percent
of all steps (exploration) and an action based on the learned
information in 90 percent of all steps (exploitation).TheQ-
values

Q(st, at) =
Q(st, at) + α(rt+1 + maxa Q(st+1, a)−Q(st, at))

with st state,at action, andrt+1 reward at stept, are stored
in a table. This requires the number of state-action-pairs to
be reasonably small.
On the one hand, the current position of the camera only
is not sufficient to define a state of the environment. On
the other hand, the complete path which has been scanned
would yield too many states to be stored in theQ-table
(all possible paths). For this reason we define a state as a
vector which contains the current position of the camera
and four values which describe the degree of unfamiliarity
of the area to the north, east, south, and west of the current
position on the view hemisphere, respectively. This has the
advantage that those scan paths which differ only slightly
but yield the same information on the object are mapped to
the same state (figure 5).
The degree of unfamiliarity of an area is calculated in the
following way. We assign a value to each unfamiliar posi-
tion of an area. This value is the distance from this unfa-
miliar position to the next familiar position (i.e. one that
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Figure 5 Areas of the view hemisphere used for the def-
inition of the states. In this illustration the hemisphere is
quantized and projected to a plane. The white position in
the center is the current position of the agent. For the areas
to the north, east, south and west of the current position
the degrees of unfamiliarity define the state of the agent.
Positions on the diagonals which separate the areas are as-
signed to both adjacent areas.
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Figure 6 Two examples for the calculation of unfamiliar-
ity. The arrows depict the scan paths. The numbers are
values of single positions within either of the four areas.

has already been scanned). Then the value of an area is the
sum of all values of unfamiliar positions in this area (fig-
ure 6). The possible values of an area are quantized into
five bins, 0 encodes very familiar areas, 4 encodes very
unfamiliar areas. For a further reduction of the number of
states we also quantize the original view hemisphere, re-
sulting in a raster of20×5 views. Thus, a state of the rein-
forcement learning module consists of six components:x-
position on the hemisphere (20 possible values),y-position
(5 possible values), unfamiliarity of the areas in the four
directions (5 possible values each), resulting in a total of
2000 states.
Possible actions are the movement of the camera in one of
the four above mentioned directions on the quantized view
hemisphere.
The reward signalrt+1 is calculated in the following way.
Before the choice of the next action the agent predicts the
view he would perceive if he performed the action. The
prediction is calculated according to the morphing tech-
nique described in section 4.4 from the last two key views
he has experienced so far. After the prediction the action
is carried out. The reward for this action is higher for
smaller similarities between the predicted and the actual
view. More concrete,rt+1 = erecon,t+1 − 1.
We carry out 50 steps per episode. Each episode starts
at position(0, 0) on the view hemisphere. In each step
the camera is moved one position on the quantized hemi-
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Figure 7 Total reconstruction errors for random and
learned scan paths.

sphere, i.e. we track the current graph on the unquantized
hemisphere to the next position on the coarser raster ac-
cording to section 4.2. While tracking from step to step
key views are determined as described in section 4.3. Each
episode provides a scan path with associated key views. To
assess the quality of the acquired data of one episode we
calculate a total reconstruction error in the following way.
We preselect a set of 10 test views, which are distributed
uniformly on the hemisphere (figure 8). These views are
reconstructed from the acquired key views as described
in section 4.4. Then the total reconstruction error for the
episode is the mean of the reconstruction errorserecon of
all test views.

6 Results
We carried out 13 episodes for the “Tom” object (figure 3)
with the method described above and calculated the total
reconstruction errors. We also performed independent ran-
dom walks with 50 steps per episode (by choosingε =
1) and calculated the total reconstruction errors for those.
The results are shown in figure 7. We obtain significantly
smaller total errors for scan paths learned with the pro-
posed method than for the random scan paths. In the fig-
ures 8, 9, and 10 the key views of some learned scan paths
are depicted.

7 Conclusion
We have introduced an active vision system which learns a
strategy to scan objects. This strategy adapts to the purpose
of the data acquisition, which is the reconstruction of non-
acquired views here. The learned scan strategy is more
suitable for the reconstruction of unfamiliar views of the
scanned object than any of the tested random scan paths.
However, this has been demonstrated for only one object
and only some episodes of the learning module up to now.
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Figure 8 The black squares represent the key views of the
learned scan path after the first episode. The total recon-
struction error for this path is 0.053. The dots mark the test
views used to calculate this error.
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Figure 9 Key views of the learned scan path after the fifth
episode. The total reconstruction error for this path is
0.045.

For a longer learning phase with more scan episodes we
expect the gain of the proposed method to be even more
obvious. We also hope to learn characteristic scan paths
for different object classes in the future. An analysis of
the system with respect to different scan purposes such as
object recognition or the acquisition of a 3d model also
remains to be done.
Nevertheless we believe that the proposed concept, if re-
alized on appropriate hardware, can result in an intelligent
scanner which allows a more efficient acquisition and stor-
age of objects. Possible applications are learning, recogni-
tion, and grasping of objects in the area of service robotics
or finding 3d models in data bases. In addition, it is an
example for learning strategies for problem solving in the
area of computer vision.
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